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ABSTRACT

It is shown that for an arbitrary strictly increasing knot sequence

t ( t . )  ~~ and for every I , there exists exactly one fundamental  spline

L . (i .e. , L , ( t .) all j ) ,  of order 2r whose r—th der ivat ive is

square integrable. Further , Lc 1~(X) is shown to decay exponentially as x

moves away fro m t ., at a rate which can be bounded in term s of r alone

This allows one to bound odd-degree spline interpolation at knots on

bounded functions in terms of the global mesh ratio M t := sup ~t /At .

A very nice result of Dernko ’s concerning the exponential decay away

fro m the diagonal of the inverse of a band matrix is slightly refined and

generalized to (bi)infin ite matrices.
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Odd—degre e spline interpolation at a bitnfinite knot sequence

Carl de Boor’

~.~~Introductton . Let ~ := (tt) be $ biinfintte , strictly increa-

sing cequecce , set

its t1-

let k = 2r be a positive , even integer1 and denote by ~~~~ the collect-

ion of spline functions of order k (or, of degree < k) with knot se-

quince ~~. Explicitly, consists of exactly those k.2 times contin-

uously dif feren tiable func tions on

I := (t.~cn~ ~~

which, on each interval (t~ ,t~ ,,1) , ootuoide with some polynomial of

degree < k, i.e.,

:= 
~k ,& r~ o~~2 on I = (t _~~, t~ )

We are particularly interested in bounded splines

:=

i.e., in eplizies $ for which

:= sup taCt )!
t’I

is finite. It is obvious tha t the restriction sap

~~~~~~~~~ ~~~~~~~ 
:=

carries into the space m~Z) of bounded , blinfinite sequences.

We are interested in inverting this sap , i.e., in interpolation . We

consider the

Pounded Interpolation Problem: To construct, for Riven a

~~~~ ~~~~~~~~ for which s~~ = a

‘Sponsored by the United States A rmy under Contract DL&G29—75-C—0024
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we will say that the B.I.P. is correct (for the given knot sequence

~
) if it basezactly one solution for every a€s (Z).

We consider under what conditions on ~ the B.I.P. is correct. We
also discuss the continuity properties of the map ai ~es~ in case the

B.I.P. is correct. We establish the following theorem.

Theorem 1. If the global mesh ratio

H := sup At1/At -

i ii
is finite, thep I = (-~n , n ) ,  ~~~ maps m$~~~ faithfully onto m(~ ) ,
t , e,. for every bounded. blinfinite aeauence a, there exists one and on.l_y
one bounded snilne 

~a
’
~~c ,i 

for which sa(tj) = a1, ~~~~ I. Moreover,

(1.1) 
‘a~~ ~ cozist lta~~ , ~jJ, a tm(~ )

with coust depending only on k and I4~

We note in passing th. following immediate coroflary.
0Corollary, Denote by Ota ,b] the space of continuous ( b— s)—p erj odtc

functions ou R. ~tven ~ z= ( t~1)~ wi.tk a = < ... = b , 
~~~~ ~~

- =

(t1) be its “(b—a)—.perl odj.o_extension”,jd...

-
~~~~ ~~~~ : + j (b—a) ~~~ t~l,...,n and all 3~~~~.

Denote br th~ (b—a)—~period1.c functions in ~~~~~ Then (as is well
known) , for every f ~C(a ,b] • there exists exactly one s~ • which
atre~ s with fj .~ r0, t1, •.., 

~~~
• ?tzrther. for some cozist den;ndin~ onl y

on the gl obal mesh ratio sax1 ,3 ~~~~~~~
c oonst Il fIt , ilk f~~3(a ,b].

Indeed , if agree. with f .~~(a ,b] at ~~, then so does its
translate s~(.  — (b — a ))  which is also in 

~k~~ ’ end therefore must equal

~~ 
by the uniqueness of the inte rpolating spline. Thi s shows that s~ is

the inte r polat ing spline in for f , and so ~s $  ~ const UI! from (1.1).
Par the case of unt fo~m ~~, ~ = 2 say , the pr oblem of boun ded in—
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terpolation has been solved some time ago by Ju. Subbotin [17]. In thi s

case , the interpolation conditions = a establish a one—to—one

and continuous correspondence between bounded spll.nes and boucded se-

quences. Subbotin cam e upon the interpolating spu me as a solution of

the extremum problem of finding a function a with s~~ = a an d smallest

possible (k—l)st derivative , measured in the eupremum norm. Later,

I.J. Schoenberg investigated the B.I.P. once more , thi s time as a spe-

cial case of cardinal spline interpolation.to sequences a which do not

grow too fast at infinity (15], (16].

Little Is known for sore general knot sequences. The simplest case ,

k = 2, of piecewise linear interpolation is , of course , trivial. The

next simplest case , k = 4, of cubic spline interpolation has been in-

vestigated in (6] where the above theorem can be found for this case.

The basic tool of the investigation in [6] is the exponential de-

cay or growt h of nullaplines, Nullsplines are therefore the topic of

Section 2 of this paper, if only to admit defeat in the attempt to ge—

nerall.ze the approach of (6). We are more successful , in Section 3, in

identifying , for each knot sequence ~ and each I, a particular funda-

mental spline Li, i.e., a spline with Li(t3
) = b13 , which must figure

in the solution of the B.I.p., it there is one at all (see Lemmas 1 and

2). The argument is based on an idea of Douglas, ~.tpont and Wah].bin [12]

as used in (7] and further clarified , ~tmplified and extended by S.Demk o

(10]. It is also shown (in Lemma 3 and its corolla ry ) that the r-th de-

rivative of a nontrivial nulispline must increase exponentially in at

least one direction. The exponential decay of the fundamental spline

is used in Section 4 to prove The orem 1. That section also contains

a proof of the fact (Theorem 4) that the B.I.P. is solvable in terms of

exponentially decaying fundamental splines, if it is oorrsct at all.

This fact is closely connected with S.Demko ’s results [10).
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2. Wulisplines and fundanental splines. It is clear that the prob-

lem of finding , for an arbitrary given biinfinite sequence a, !2~!
spline s for which = a, always has solutions. In other words,
it is clear that R

i 
maps onto B~. To see this, start with a poly-

nomial p0 of order k whtc~ satisf ies p0(t 0) = i~~, p~(t1
) = a1, and set

• = p0 on (t0, t1). Now suppose that we have a already determined on

some interval (t
~
,t

3
) and let p3,1 be the polynomial which coincides

with a on [t 1,t ], Then 
-3— ~ -. I t _ t \ k — 1

p
3
(t) := p 3_1 (t) + (a j +u_P 3..l (t i+l ) ) (

~ j+17 j

is the unique polynomial of order k which takes on the value a
3~1 

at

t
3~1 

anI agrees with p~~1 (k—l)-fol d at t3... The definition

a = p 3 on

therefore provides an extension of a to (t1,t3.1], and , in fac t, the

only one possible. The extension to (t1,,1,t3~1
] ii found analogously.

In this way, we find a solution inductively.

The argument shows that we can freely choose the interpolating

spline on the interval tt 01t1] from the k—2 dimensional linear mani-

f old
- J~p e; : p ( t 0)=a0, p ( t 1)=a1

and that , with this choice , the interpolating spu n, is otherwise uni-

quely determined. In particular, the set of solutions for a = 0, i.e.,

the kernel or nulispace of the restriction map R~ , is a k—2 dimensio-

nal linear space , whose elements we call nuilsvlines. In other wo rds,

nulisplines are splines which vanish at all their knots.

The difficulty with the B.I.P. is therefore not the construction

of some interpolating spline. Rather , the problem is interesting be-

cause we require an interpolating spu n, with certain additiona l char’.
acteristios or “sid, conditions ” , viz, that it be bounded. Nulisplines

-4—
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can be made t~ play a ~a~ or role t~ the analysis of this problem .

For instance , the question of how many bounded solutions there

are is equivalent to the question of how ms~ny bounded nulleplinea there

a re. More interestingly, a well known app r oach to the construction of

interpolanta consists in tryi ng to solve first the special problem of

finding , for each i, a fundamental spline, i.e., a spline Lj€ $ki  for

which

L1(t
3
) = all -j.

Such a spu me consists (more or less) of two nulisplines joined together

smoothly at t~ . The refore , if one could prove that both nullsplines de-

cay exponentially away from t~ , i.e.,

flLifl,t ~ ) ~ co nat~ , all 3 ,
‘P 3, ~~

at a rate X~~[o,1) which is independent of I, then it would follow that

the series

(2. 1)  s := £ aiLia

converges uniformly on compact subsets of I—and gives a solution to

the B.I.P.. In fact , s
~ 

thea dependa continuously on a, i.e.,

N5aL,~ ~ 
constk ,X if alI~ all UE.m(Z)

for some constk ,~ which does not depend on a.

The hope for such exponentially decaying fundamental functions ~.s

really not that farfetched. Such functions form the basis for Schoen-

berg ’s analysis in the case of equidistant knots, and they occur impli-

citly already in Subbotin ’s work. Further, a very nice result of S.Demko

(10] .~~~ be elaborated upon in the next section ( see also O.Chui ’s talk

at this conference) shows that the bounded spu n. interpolant sa to

bounded data a is necessa ri ly of the form (2.1) with exponentially de-

caying L1 in case 5a depends continuously on a.

In a rather similar way, nulispliziss also occur in the discussion

— 5—
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of interpolation error, If f im oufficiently smooth , and is its

spli me Interpo lant , i . e . ,  a~ j~ , then one gets , formally at

first , thnt
t
lt

cD
(2 .2)  1(t) — s1( t)  = J 1C(t ,s) f0~~(~~) da

t_a~
Here , the Peano ke rnel K( t , .) is a spline function of order k with

knots ~ and an additional knot at the point t, and vanishes at all the

knots ~ . Hence , K(t,.) is again a function put together from two null—

splines. The exponential decay of these two nullaplines away from t is

desirable here , since only with such a decay can (2.2) actually be veri-

fied for interesting functions 1. nut, I won’t say anything more about

this here.

Sased on my experience with [6], I had at one time cons idera ble

hope that the exponential decay oi~ nullspliñes could be proved with the

help of the following considerations. A nulispline s-t$~~~ is deter~ir~ed

on the interval (-ti,-ti+1] as soon as one knows the vector

:= (s ’(t i) ,  •~~~
‘‘

since one knows tha t s(t ~ ) = s( t j+1) = 0. One can therefore compute 
~~~~~~~~~

f rom in a linear manner. Specifically,

= —A (6t 1) 
~i

with A (h )  the matrix of the form

A (h) := diag(l,h”~ ,...,h
”1
~
3) A diag(l,h,...,hk3 )

and A = A (l) the matrix

A ( ( k_ l\ (j ~ \ k — 2
‘iJ

_
~ iI Ii ,j=l’

This means that A (h) has many nice properties. For instance , A’~
1(h) =

A C— b ) , and A (h )  is an oscillation matrix in the sense of Gantmacher and

Xrein.

In the special cubic case , k = 4, A(h) has the simple form



1 2  h
A (h) =

2

a nd allows therefore the conclusion that grows exponentially either

for increasing or else for decreasing index 1., at a rate of at least 2.

This observation goes back to a paper by Birkhoff and the author [1].

The transformation A (h) has been studied in much detail in the

oase of equidistant knots in a paper by Schoenberg and the author [8],

and also in more generality, by C. Micchelli [14]. nut, auch exponent..

ial decay or growth for nullsplines on an arbitrary knot sequence has

so far not been proved. S. Priedland and 0. Micchelli [13] have obtained

from such considerations results concerning the maximal allowable local

mesh ratio

at := sup At1/~t
— 1—31=1 3

3. Exponential decay of the r—th derivative of fundamental splines

~~d nulisplines of order k = 2r. We base the arguments in thi s sec tion

on the beat approximation property of spline interpolation. To recall,

the r— th divided difference of a sufficiently differentiable function

I at the points t1, ~~~~ ~~~~ can be represented by

- (tj,...,tj~~
]f = JM1(t) f

(r ) (t )  dt/r~

with M1 = Mi a B..spline of order r ,

~ r(t j , . ..,ti+~
) ( .  —

normalized to have unit integral . Further, ts (r )  
~ ‘~ 2r ,t~ 

=

while, by a theorem of Curry and Schoenberg [9),

= on I

where we take the bi infini te  sum pointwtae, i.e.,

:= EiBiMi
(t), all tt~R.

This sakes good sense since 

~~~~~~~Pj & ~~~~~~~~~~ ~1iM~ ~~~~~ : - -  -
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Mi(t) > 0 with strict inequality 1ff t1 < t < ~~~~

Lemma 1. ç Pt L€$2r,~ : L(t
3) = e ij .  all j~J. 

~~~~ 
£.~~ ~~j .

exactly one element in common with 41’) (I ) .  We denote this element by

L1

and call it the i—th fundamenta l spline for  the knot sequence ~~. Further,

with the abbreviations

(3.1) := sup At , h := in! At ,.1 — 3
we have

(3.2) 114r)112 < COD8t~,

for some constant COflSt r c~ ,ending only on r.

Proof. We first prove that contains at most one element in

= ~f~~ C~~
1(I)  : f (1~~~~ aba.cont., f~~

’
~EL2

(I )~y. Since —

= ker Ri. it is sufficient to prove that the only nullepline ~~ 14
r) 

~~
the trivial nullepline. For this, let seker R~ t~4”~(I). Then, by the

introductory remarks for this section,

,(r )  = .E
3~ 3

M
3 
for some ~~~~~~~~~~~~~~ s(r) €L 2, and J

’M 3s
(r ) = 0 for all 3.

But , by a theorem in (3) , there exists a positive constant Dr which de-

pends only on r so that , for 1 < p <~~~~, and for all

(3.3) ç1 Ihi~ ~ lI~ jy j ( ( t j +r_t
3)/1) 1_1

~
/
~ h j I1p ~ 

(hip

Eere, Ihil~ := (E3
lTIP)1~

’P, while, for I on I , IIf((1, :=(J1(1I
P)l1”P. This

shows that the sequence (F(3) given by

(3.4) := ((ti+r
_t

i
)/r)l/2 M~ , all 3,

is a Schauder basis for 
~r,&”~ ’2’ Therefore, E3

y’
3~ 3 

converges L2 to

the spline function in it represents. But this means that our part..

ioui.ar spline a~’~ is in the I2—span of CM1), yet orthogonal to every

one of the ~~ which means that 5Cr ) vanishes identically. But then ,

since a vanishes more than r times , a itself must vanish identically.

—



Nex t, we prove that contains at least one element in I4
1
~ (I).

For thi s , we recall from [
~~] that there exists, for any given ae]I~

7
~,

a function g which is locally in 41~and satisfies = a,  and whose
r—th deri vative satistles

(3•5) ((g (r ) fl2 < D~.(Z (t j +r_ t j ) ( E t j ,. ..,t j +r]a) 2 )l/2 ,

with Dr the same constant mentioned in (3.3). Here , the number
[tj.....tj+r]a stands for the rth divided difference at the points t3,

~~
• . ,  ~~~~ of any function f for which = a. In this way, we obtain

for the specific sequence a = (6i_j)~~~ ,
a function g~~i4~~ for which

g(t1) = 
~~~~~ 

all 3,

while IIg
(1
~~~2 is bounded by the right aide of (3.5). Note that, for

the specific sequence a = ~~~~ this bound becomes

~g (r)~ 2 ~ Dr( Z (t~+r
_t

j)[l/f•T(ti
_t
n

)]2)1/2

c oonst r (~~) k /h1
~

Now let ~ be any element in ~~ that ~
(r )  is the L2—approxiination

to g~~ ) f rorn 
~r~~j~~’2 This makes sense since (3.3) insures tha t

$ AL 2 is a closed aubapace of L~(I). Then

(t j~ ••i~ t~+r ]~ = fM~~~~~/r~ = fM 3g~~~/r~ =

all 3, while < ~g(l~ 
~2 • But this means tha t , for an appropriate

polynomial p of order r ,

+ p~(t 3) = g~t3~ = 
~i— 3 ’ all 3,

while still I~ -~ + ~ ) (r ) (J 2 < ~~(r)~~ < oonstrS~
F2/hr. This shows tha t

L := + p is a function of the desired kind . III
We continue to use the inequality (3.3) and the abbreviation

= ( ( t j+r_tj)/r)
l/2M3, and come now to what I consider to be the

main point of this paper .

— ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 



Lemma 2. if ~ 13 the sequence of coefficients for L~
1) with respect

to the basis ( i ~3
) 

~2Z ~~~~ 
i.e., if r) 

= Z 3~ 3M3, and

~(n ) := 
(j — i ( n 

, n=0,l ,2,
( 3.-i ( > n

then there exist  OOflStr and A~ c~[0 ,i) depending only on r so that

(3.6) 11p (fl ) 11 < const~ ~~~~ ~~ n=0 ,l ,2 ,

The inequalities (3.3) allow us to conclude from Lemma 2 the ex-

ponential decay of in the following form.

Corollary. For som e COflStr~ 
and some ~~ Eo ,i) depending only on r,

and for all I and n ,

+ lI4r) II 2 ,(~ ,~~) ~ 
COfl8t~ 4~~H2 )‘4

Proof of Lemma 2. Let

A := (ç;t1c~3 )
be the Gram matrix for our appropriately normalized B—apline basis of

A proof of the lemma can be obtained directly from the fact that
the elements of the inverse matrix for A decay exponentially away from

the diagonal at a rate whj .oh can be bounded in term s of r and indepen-

dently of ~~. This is proved in (7] with the aid of a nice inequality

due to Douglas , Thipont and Wahibin (12]. But , between the time I proved
Lemma 2 this way and the delivery of this talk, S. Denko wrote a paper

(10] in which he demonstrated that such arguments use actually very

little specific information about aplinea. Using the inequality of Doug-

las , Th~pont and Wahlbtn , he proved the following nice

Theorem (S. Deako) . Let A := (a 13 ) be an invertible band matrix
( of  finite order). Explicitly, assume tha t, for some m , a13 = 0 when-
ever (i—31 ‘~~ m . and that, for some positive K and !, and some pe [l,~m],

K IIX(I ( ItAxI1~ < f (( xfl 1, , all x.

I 0 -
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Then the entries of the inverse A 1 =: (b13
) satisfy

< conat , all 1,3 ,

for some const and some Xc[0,l) which depend only on m , p ,  I and !. ~~
particular, these constants do not depend on the order of the matrix A.

The interested reader will have no difficulty in proving this theo-

rem after a study of the following proof of Lemm a 2 , a proof which makes

essential use of Demko ’s ideao , even though the inequality of Douglas ,

fl~pont and Wahibin fails to make an explicit appearance. In the bargain,

the reader will thereby obtain explicit estimates for oonat and A(wh. tch

Dernko did not bother to compute).

We note that the specific matrix A = (f~~) is a band matrix , of

band width m = r—1 in the sense that JM~~I = 0 for (i—il ‘> r— 1. Also ,

we conclude from (3.3) that the sequence—to— sequence transformation

a .-~Aa

induces a linear map on L~ (~~) to ~C~ (~~) which we also call A and which

is bounded and boundedly in”ejttble. Specifically, one obtains from

(3.3) that

C3.7) k := ffA fl~((A~~fl2 ‘C D~,
2

Here , (I BH2 := sup (llBa I 2/l1a~2 : a~ L2(
~ ) i ,  as usual.

We now claim that, 
-

(3. 8) for all n ~ 2r, ~~
(n)~2 < ( ~~2/( 1+~(2)) ( J ~ ( f l 2~fl ) ff 2

which , with the i—independent estimate (3.7) for K, establishes the

lemma (with ~~ <(k/ (i+H~) h/2 ) hh’~~ ~
For the proof of (3.8), we consider without loss of generality only

the specific function L0. We note that

(A~)1 = f~~4r) = r~((ti.r
_tj)/r)

hl/2(ti,... ~
ti+r]Lo

= 0 unless ti < t O < t i+r s

— 1 1 —

- ~~~~~~~~~~~~~~~~~~~~~~~~ 
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Therefore ,

(3.9) supp A~ C (—r,O3 ,

where, for any biinfinite sequence a, we use the abbreviation

supp a := {i~~z : a1&0~.

We claim that, for n > a,

(3.10) supp Ap~~ ~ (—n—rn , n+a) ‘. (—n+m , n-a)

Indeed , supp — ~
) ~ (.. n ,n ) ,  hence supp A(~~~ — ~

) c. (—n—a , n+m)

whth also contains supp A~ a (—r,0], therefore

.upp C (—n-rn , n+m)

On the other hand , eupp ~~~ c~~ ’.(— n , n ) ,  the refore also

supp ~~~~ c ~~~~ -n+m , n-m

It follows from (3.10) that, for n ~ 2z,

(3.11) supp ~~~~ fl supp Ap~n-~~ =

therefore

~ flA~~Z~ fl~ + ~~~~~~~~~ = f fA (p~ — 0

But then

~ flA P(~~fl2 ~

— 0 (n— 2m ) 11

1...,

< —

= g2~10(n-2a) 12 
— ~~(n)1~)

which proves our earlier claim (3.8). I I I
It is olear that the argument provides the exponential decay of

— I
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the form (3.6 ) and wit h X < (g/(l+~~ ) 1/2 ) l~’~~ fo r any sequence 0 in

~2 ~~ 
for which £0 has finite support. In particular, one obtains such

exponential decay for the sequence y~1~ for which Ay~~ = (~~ _~~)~ i.e.,

for the i—th row of the matrix inverse of A. Further, it is clear that

(3.11) implies !lA~~~ It~ < l(A~~~ (( + ~10 (n_ ~~ )
11; fo r any 1 < p <

hence , the argument carries at once from 4(e) over to any ~(z) with

1 < p c m .  Denko obtains such exponential decay also for p = m by con-

sidering the transposed matrix AT for which then automatically

=

due to the finite order of the matrix he considers . This switch requires

a word or two in the infinite case, as follows. As one easily checks, if

a (bi)in finit e matrix (a13 ) give s rise to a bounded linear map A on

then its transpose gives a bounded linear m~p B on L~, and the ad3oint

of B is then necessarily A itself. This implies that , if a matrix

gives rise to a bounded linear map on which is boundedly invertible,

then its inverse can also be represented by a matrix, viz, the transpose

of the matrix which represents the inverse of the linear map on 
~l 

given

by the transpose of 
~~ij~’ 

Of course , exponential decay away from the

diagonal is unchanged when going over to the transpose.

These comments establish the following

Theo rem 2. ~~~ !4 b~ a finite. infinite or biinflnite “interva l” in
Z, ~~~ 1 < p cm , and let q := mm ~

p, p/(p—l)~~. ~~~ 
(a~~)~ 3aM

mat ri x with baud width m := sup ~Ii—J ( : a13 ~ ~4, and assum e that (a 13 )

induces a bounded linear ma~ A a~ g~(x) . ~~ A is boundedly invertible,
then A 1 is also given by a matrix, (b 13) say, and

‘C const )~lt..3( , a3l i ,3,

‘with

— I

- - -~.~~~~.r*Z1 -- - -  
— 

— - • . -



:= (~ /( 1~~q ) l/q ) l/~~ , const < tA .-
~l~ />~

m , k:= lIAtI 9~A
’ll~

We add one more remark. With the appropriate interpretation of

Isbandedneesil , the above argument carries through even for matrices which

are not banded In the straightforward sense. As a typical example , con-

sider the Gram matrix for a local support basis of some space of func-

tions of several variables. Then , there is no ordering of that basis for

which the corresponding Gram matrix is appropriately banded. But, if we

follow the geometry of the underlying problem and think of the Gram

“matrix” as ac ting on functions on some multidimensional index set M

having an appropriate metric ( . 1  (instead of on ~ ) ,  then the statement
and the proof of Theorem 2 go through otherwise unchanged. We do not

pursue this point here further, but alert the reader to Desoloux’s fine
paper (11] in whi ch such considerations can be uncovered once one knows
what to look for.

We fi~ tsh this section with the observation that the r-th deriva-

tive of a nontrivial nulispline must Increase exponentially in at least

one direction. The argument Is rather similar to the proof of Lemma 2.

We continue to denote by A the epeoifio matrix ( ! ~~ 3
) and recall

(3.7) j~ := llA fl2IA~~fl2 ~
Lemma 3. ~~ is the r-th derivative of a nulispline in

and I ‘C 3 are arbitrary indices, then

3
(1 + 1(2) Z £

vat

Proof. Define 0 ’ , 0” by

~~ ic..cj 
— 

ç Ø ,, i.-~~~~~3+2m
0 := 4 • 01, ~~

— I
(0  , otherwise J. 0 , otherwise

so that the inequality to be proved reads

(~.l2) (1 + < g2 hi~

— 1 4 —



We have

supp £0 ’ C ( i— rn , 3+rn ]
while

su~~ (0 — 0 ”) ~ Z ..~i—2rn , J+2in ]
therefore , wi th A~ = 0,

supp £ 0 ” = supp A(0 — 0 ”) ~~-~~‘ (i—m , 3+m) c ~~\supp £6 ’ .

Consequently,

~ ffA~ ’ff~ ~ (fL(p ’ —~~”)ff 2 ~~ QLl12~a’ — 0~~2
or , with ~( =  IIA(I 2IJA~~JI2,

< ~ 2 
~~~~~~~ 

— = ~ 2 ( Ho ”If~ — Il0’II~)
which implies (3.12). III

Ooroll~~y~ Let be the r~..th derivative of a nullapll.ne s in
end met

a := £ I~~f2, all 3cZ3 2m3.cic2m(3+l) —

with a := r-1, as before. Then

(3.13) E a , < 1(2 (a1 + a 4 ) ,  for all I ‘C 3.
iCvc3

~ierefore , for all 
~
, , and either for all I ~ or for all i ‘C

a1 ) Oenst~ p~I’—rI

with

oonstr 
1

Ang

A:, (1 + 1(2)/1(2 > 1

Assertion (3.13) follows at once from the lemma. The second

assertion of the corollary is less obvi ous. Per its proof, assume with—
out less tha t 0. Prom (3.13),

— .  - —-- -
~~ . — ~

- 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
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i i/\ a0 c E a~ , ial ,2 ,3, ... .
-i’C~ci

Therefore,

( 3.14) (\ t c < t i~~~, ial,2,3,
— 1 ‘C ~ci

with

o :=

Let now const0 = ~~. as defined above, and assume that the 1nequal~
ity

a1 ~ cona t0/~J~~
1

is violated fo r  some I )‘ 0 while also

(3.15) a_3 c eonstb l\3

for some positive 3 which we assume without loss of generality to be no

less than I. Then, we can also assume that 3 is the ~sal1est index ~ I

for which (3.15) holds. We obtain from (3.13) that

(3.16) Z au c ~
2(a + a )  ‘c K2conatJ /~

3 + Ph = 
~~ 

o(A3 +

- j ’cj ’ci
On the o ther band , by (3.13) and by the choice of 3,

t ,
~ = E a 1 + £ a,,

-$v Ci —3’Cu5..i
~ oonst~ I~

3-l — (tt—l))/(A—l) + oAtm

+ =

which contradicts (3.16) , and so finishe, th. proof. In the second last

equality, we used the fact that /~— 1 = (z 2,1)/k2 1 = 1/1(2. I I I

Rema rk. It is easy to see tbat ,in the corollary, a~_ 1 • a, j~ 0

for any j’.in case the nulispline s is not trivial. icr if, •g., a_1 g

= 0, then s~~~ woul d vanish on (t_2~, 1~~(~~~1) P  t~~,,(~~,1) ) ~ (t2_ r #t~.,l )~

— I ‘‘—
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hence s would be a polynomial of degree ‘C r on that interval and vanish

2(x-l) times there , therefore would have to vanish identically there.
But then, we would have s = 0 by the considerations in Section 2. We

can therefore conclude from the corollary that, for a nontrivial null—
spline 5,

a1 > conet /\IiI

either for all 1.~~ 1 or else for all I <— 1 , with a1 and I\ as in the

corollary and oonst : 
~ max~a_ 1, a0\/ (k At> 0,

The argument for this corollary would have been simpler had I been
able to prove that every 6 with £6 = 0 can be written a~ a sum 6 =

With £i,oIpfl
2 < m  and £i<o I6~ l2 <m and £0’ = A~” = 0.

A minor “ariation of the arguments for Lemma 3 and its corolla ry
allow the following conclusion of independent interest in the study of

linear difference equations.

Theorem 3. Let A = (a13 ) be a biinlinlte matrix whi ch represents

a linear map, also denoted by A , on ç(Z) for some p e,(l , m) which is

bounded and bounded below. i.e.. there exist nositivs ~ anne f so tha t

~aI1~ IAa~~ c f 1Iuff~ for all a

A 1~ a band mat rix, i.e. .  it

a : sup {li_j I : a13 a~ 01! ‘C

then any nontrivial sequence ~ for which £0 = 0 must increase exponent-

ially either for Increa sing or for decre asing I. £xplicitl y. there

exist an Index p and a ~os1tiv. const0~ ~o that, either for al] i “lu
or else for ’ all I <~~~~,

£ 0 p ~ 
oonst~2m1CJC2a(i+l ) ~ “P

‘4th

~~~ (1.~c~)/k~ ta k:’ !iy ~.
Tha nk s are due to Allan Pinku s for questioning the necessity of an addit-
ional assumpt ion in an earlier version of thi. theorem .

- 1 7-
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4. ~.xponent 1al decay of the fu~ dame~ ta1 spi ne. Assune that the

knot sequence is such tha t the B.I.P. is correct , i.e., baa exactly one

solution saEm$~ ,& 
for eve ry o~~,m(~ ). This means tha t the restriction

map R~, when restricted to is one—one , onto , and clearl y bounded

with respect to the sup—norm. One verifies directly (else see (4.2)

below) that m$k,i is a closed aubepace of m(I), hence complete. The Open

Mapping Theorem therefore provides the conclusion tha t is boundedly

invertible, This means the existence of some oonst so that

(4.1) < const lk~~ , all aem (~~).

Let N1 = Nl ,k ,& be the i—tb 1.. spll ne of order k for the kno t sequ-

ence ~~, normalized so that

:= ((ti+1,...,ti+k] — (t1,...,t1~~,1
))(. — t)~~’1’

and so , comparing with the B..splines Introduced at the beginning of

Section 3,

= ( ( t i+k
_t j )/k ) 

~~~~~~
From (3.3), or already from (2] ,

(4.2) Iç1Ilo~~ ~~~ lZ10~ N1I~ ~~. tIPL ~ • all Oa a(Z) ,

for some positive constant ]~ depending only on k and not on .

Since (N1)~~ is a basis for (in th, sense described in the pre-

ceding saction), it follows that a satisfies = a If and

only if its 3— spline coefficient sequence 6 patisfies

(4.3) E 313(t1)0 3 = a1, all I

while s 1. bounded if and only if iti corresponding B— spline se-

quence P is bounded , by (4.2). We conclude that th. 3.I.P. has exactly

one solution for every atm(Z) 1ff the matrix

a ;=

maps 1
~ faithfully onto We collect these facts in ths following

- Is-



Theorem 4. The bounded Interpolation problem is correct if and on.ly

If the matri x

A = (N
3
(t1))

provides a faithful linear map from t~(~) onto ~~~~~ If one or the other

of these conditions holds, then A , being trivially bounded, is boundedly

Invertible. Since A is also a band matrix ,  of band width m :=r—l , ~~
then follows from Theorem 2 that the inverse of £ is also given by a

matrix, (b
13
) say, and tha t

~ conet >~1~3I , all 1,3,

with

const < K/ )~~’, ~:= IIA 1
~~

since IALI, = 1. In particular, for all i, the function

:= £3 b13 N3

is then a fundamental spllne which decays exponentially at the rate X ,
and the solution of the BPI.P. for given a€m(~ ) is given by

s~ = E
3
a
3
L
3

a series which converges uniformly on compact subsets of I.

We do not know conditions which are both necessary and sufficient

for the correctness of the B.I.P. • Since correctness implies bounded—
ness of the map sP~

_
~ s~ , we obtain from (4 ; Lemma Of Section 2] the nec-

essary condition that the local mesh ratio

a = sup At/~t11—31=1 ~
be finite. If the local mesh ratio is Indeed finite , then a simple suf-

ficient condition for uniqueness of the interpolating bounded spI ne 1.

th. condition that

(4 .4)  - I a (.
~~• •)

-~ - 3t1~~~~ -~ -- 
-

- - - ?~ .-.‘i 1-



This is counecte d with the fact tha t , with k = 2r, the r—th derivative

of any nontrivial nu.llspline grows exponentially in at least one direct-

ion, as described in Lemma 3 and its corollary. Precisely, we have the

Loll owing

Lemma 4. If m := sup At4/At ‘ C T , and there exists a bounded
_______ — 

~~ 11— 31=1 ‘
nontrivial nullspline a in 

~k 1 1’ then eithe r ~~~~~~ or

Z.~~.21.. Let e = EIr1Ni,k be the nontrivial bounded nullspllne in

Its 3—th derivative is then ~( 3 )  
= z ~~~~~~~ with

( 3 )  J “i ‘

— r~ij
2 ) )/(t1•~_,3

_t1), 3> 0

This implies the estimate

(4 ,5) < 
~~~~

-

~~~~~~

-‘ 2~ max

(see, e.g., (4], for similar consIderations). Write now the r~-th den y—

ativ. of s in term s of the somewhat differently normalized B—splines

:= (r/(ti+r
_t
i))

1
~
2Jj,r,~ introduced i~ Section 2,

5(r) 
= ~~~~~~

Then = .4r)( ( t i+r_ti)/r)
l/2, so that, from (4.5),

(4.6) 
~~~ ~ 

const~,

By the corollary to Lemma 3 (in Section 3) ,  we may assume , withou t loss

of generality, the existence of a positive const so that , wIth a = 1-1,

E tP~I > const p~3 , 3=2 ,3,...
2m3’CI’C2m( 3+1)

where A:= (1+ R2)/ic~
2 )  1 and K 

~~, 
D m

2 , the latter a certain constant in-

depe ndent of ~ • In conjunction with (4.6) , this implies that

oonet A3 
~ const r,y maz~(t1,~—t 1)~ ”2r ’ :

~ oonst~,~ (a~)
r’ min

~
(tj.r_tj)~

”2’ : 2a3cic2m(3+l)1!,

where we have used the fact that

—



~~, 
(ti+r

_t
i)/(tj+r

_t
i
) c m~l u I

It now follows tha t

tt+r — t~, < const A 1I’(2~~ , i=2z , 2r+l ,...

and the refore

— ~~~ + E ( t (1~1)1 — ti1) ‘C . III
We note in passing that the argument also establishes uniqueness

in case either t,~~ or t~, is finite as long as the local mesh ratIo Is

for some ç which is greater than 1 and depends on A.
We are now ready to prove Theorem 1.

Proof of Theorem 1. SInce the global mesh ratio M~ =

supi,jOtj/At 3 
Is f inite , then, in particule r , I = (-., n) and Lemma 4

implies that maps m$k~~ 
one—one to m(Z).

Next , we prove tha t , for each i, the fundamental spline function

introduced In Lemma 1 decays exponentially away from t~ , i.e., for

all 3 and all

(4.7) lI.1(x) I c oonst )~lt 3l

for some const depending only on k and X~, and some Xe(O,l) which de-

pends only on Ic. It suffices to consider 3 ~ i. Ye ha te Li(tn) = 0 for

n ~ 1, therefore

X~1(x) =

= T~T( m.~.t 3~~) fr(x ,tj ,1,..., tj.1](._t)~~
1 L~

1
~ (t)dt/r

By H8lder ’ s inequality ,

,fr(x,t3~11...,
t
3~1

](._t~~~ i r’
~(t) dt

‘C (r /(t 3~1
_ x)) ]/’2 nx4x) u2 ,t~,t3 I ‘

making use of (3.3) , so that, f rom the corollary to L maa 2,

—

-~~~~L
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1L 1(x) I c const1 (Er,hl/2 ) COflSt r flL~~~II 2 ~~~~~~~

with A 6 ( 0 ,l) depending only on Ic , and

:= 5
~~ n ~Itn p ~ := 1

~~ n ~~~
But now , from Lemma 1,

~ const r E
l/2,hr

and (4.7) follows. -

The exponential decay of all fundamental spllnes L1 at a rate

which does not depend on I now allows us to construct an lnterpolant

in for arbitrary a Ern (Z ) , in the form

‘a = E1a1L1

which satisfies

c oonst fla~~

and therefore is in m$~ ,1 . III
It is clear tha t the argument for Theorem 1 shows the existence of

a number q> 1 (which depends on Ic and on the X of Lemma 2) so that the
conclusions of Theorem 1 hold even if we only know that the local mesh

ratio is less than ~. £ quick analysis of the constants involved shows

thi, provable ~ to converge to 1 very fast as Ic increases.

- --—~~~~~~~~~~~~~ - .  
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~0. ABSTRACT (continued)

This allows one to bound odd-degree spline interpolation at kno~s o~i~~ s~~Gi~

bouride~ funct ions in terms of the global mesh ratio M :~ sup.  At /~~t1 . )  1

A ve ry nice result of Demko ’s concerni ng the exponent ial  decay

away f rom ~ht ’ diago nal of the inverse of a band matr ix  is s l ight ly re fine ’i

a nd general ized to (b i ) in f in i t e  m atr ic e s .
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